If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2.5x^2-16.4x+26.375=0
a = 2.5; b = -16.4; c = +26.375;
Δ = b2-4ac
Δ = -16.42-4·2.5·26.375
Δ = 5.21
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16.4)-\sqrt{5.21}}{2*2.5}=\frac{16.4-\sqrt{5.21}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16.4)+\sqrt{5.21}}{2*2.5}=\frac{16.4+\sqrt{5.21}}{5} $
| d(d-11=) | | 10+10−9z=–10−4z | | 2x-9=59 | | x/3-2/3=8 | | 3x=-23-18+41 | | 4x+23=21 | | 10.99x=280+3.99x | | .5x=22.5 | | 2x+1=3x-8+15.9+15.9 | | 5x=10;x | | 9m=6m-3 | | 7.2x=10 | | 4x-44=54-3x | | 3^x=222 | | -15=4w+5 | | 6x=24;x | | -4+y/2=-16 | | 1/13+x=32/3 | | H=-16t^+38.4t+0.96 | | x-7/15=-1 | | 2s−8=–2+s−10 | | 21+x=12-2x | | 163=-w+109 | | Y=4(y+3) | | 2^{4x+1}=11 | | 209-y=13 | | 199=-x+253 | | 3x^2=6x+23 | | 2g+-4=2 | | -v+-4=0 | | -7(4-2x)=21 | | 2x+x=304 |